The RTC Extensions Workshop has been updated for EWM 7.0.x

I am very passionate about the RTC Extensions Workshop as you might be able to tell from the content of this blog. Performing it with EWM 7.0.x provided several challenges. It became apparent that an update to the workshop would be beneficial.

I spent a considerable amount of time in the past two months to update the workshop. As a summary the following items where addressed:

  1. Since the CCM server is shipped with WebSphere liberty profile, configuring the server for debugging needed to be changed. The old way to configure the server still worked in the 6.0.x versions, so it went unnoticed. With EWM 7.0.1 this is no longer the case and the workshop was updated to address this.
  2. The advanced capabilities introduced in the EWM SCM system in the 6.x and later caused a deviation of the screen shots showing the pending changes. The workshop setup tool was slightly changed to fix this.
  3. The workshop setup tool and its shell script has been tested with Linux and MAC OS.
  4. I wanted to add a section to Lab 1, explaining how to setup the existing Eclipse client/server development workspaces to better support development and debugging of the Plain Java Client Libraries forever. The new last optional section addresses this. For this reason Lab 1 of the workshop is a must for anyone intending to create Java based automation or extensions to RTC/EWM.
  5. I had an errata list with a number of small issues, typos, naming inconsistencies and the like that were fixed. During reviews a bunch more showed up and were fixed.
  6. A colleague ran the workshop on his MAC, so this works. Use whatever is available for MAC like Eclipse and where this is not specifically available, use the Linux versions.

The RTC Extensions Workshop has been published with an additional section for the new EWM versions and is now available for download. I will update recent posts around the workshop in the next few days.

As always, I hope that this blog post helps the users in the Jazz Community.

EWM/RTC Extensions Workshop works with EWM 7.0.x

As published in Issues with the EWM/RTC Extensions workshop in 7.0.x versions, there was an issue that caused the RTC Extensions Workshop to fail starting a Eclipse debug client in Lab 1.9. The problem and how it was caused has been found. I have just tested the RTC Extensions Workshop Lab 1 with the new EWM Client SDK (7.0.1 and 7.0.2) and it works now as it should. I will update my previous post.

Update for the Extensions Workshop now available

All the issues have been addressed in an update to the RTC Extensions Workshop for the 7.0.x and later versions. This should address all the issues.

While running the test, I found that I had to increase the maximum heap size for the launch [RTCExt] Jetty RTC Server, because the JUnit Test that is run to create the test database, ran out of heap memory. I doubled the value from -Xmx256M to -Xmx512M and the error was gone.

Increase the available heap

The fix is only in the EWM/RTC Client SDK, so it is only necessary to download that again.

Please note that due to the name changes and newer versions of Eclipse, there might be some small differences between the screen shots in the RTC Extensions Workshop and the newer versions. However, they are so minor, it should not be an issue. I am currently looking into updating the current Extensions Workshop material with small changes to help guide the user with these changes.

The issue with server debugging explained in Issues with the EWM/RTC Extensions workshop in 7.0.x versions, is still apparent in 7.0.2. The suggestion to change the JRE of the server in that blog post holds.

As always, I hope that my posts here help the Jazz user community and save them some time.

EWM/RTC Plain Java Client Libraries and Maven

I have worked with Maven applications using the RTC Plain Java Client libraries often recently. It has not always been fun, I have been struggling with Maven. I have been struggling with the Plain Java Client Libraries and Maven interacting. In this bog, I will try to share some things I have learned over the time, and recently, that you can use when working with Maven, especially in the context of EWM/RTC automation using the Plain Java Client Libraries.

Maven basics

How to install Maven is documented in this link. I do not intent to rewrite this documentation. I just want to emphasize some things that I always run into.

  1. Using Maven, requires a Java JDK. A JRE is not sufficient. Where to download a valid, supported, IBM JDK, is explained below.
  2. When using Maven in the command line, make sure to have the JAVA_HOME set to the correct JDK.
  3. When using Maven in the command line, make sure to have Maven added to the path.
  4. When using Maven with the Eclipse IDE, make sure to have an up to date Maven installed. I usually download the recent version, install it to work with a command line and then add that install to Eclipse.
  5. When using Maven with the Eclipse IDE, there is still the need to have a compatible JDK configured. Make sure to go to Preferences>Java>Installed JRE’s, add the JDK and set it as active. Then go to Preferences>Java>Installed JRE’s>Execution Environments configure an environment with the JDK. E.g. JavaSE-1.8 for EWM 7.0.x.
  6. When using Maven for a project in an Eclipse IDE right click on the project
    1. Use Maven>Update Project to make sure Eclipse is configured correctly.
    2. Use Run As>Maven clean on the Project or the pom.xml.
    3. Use Run As>Maven install on the Project or the pom.xml.
    4. Sometimes the Eclipse build mechanism seems to be in conflict with Maven, Project>Clean might help.
  7. Sometimes weird things happen. Run maven with -e or -X to see more details.
  8. Sometimes weird things happen, if all fails, consider to delete the local repository folder in the .m2 folder in your user directory.

Maven and the EWM Plain Java client libraries

When working with EWM/RTC automation based on the plain java client libraries, it is possible to download a valid, supported, IBM JDK on the same page where the Plain Java Client Libraries are hosted. When working with EWM/RTC and the Plain Java Client Libraries, the items below show the most important files to download to work with the Plain Java Client Libraries. To get them go to the All downloads tab for the version required. As an example for EWM 7.0.2 go to https://jazz.net/downloads/workflow-management/releases/7.0.2?p=allDownloads.

  1. Get the 10-Free Developers License Activation Kit. Scroll down to the section License Keys and download the 10-Free Developers License Activation Kit. It is very useful to run EWM test systems.
  2. Get the Client for Eclipse. Scroll to the Plain .zip Files section. Download the Client for Eclipse for your architecture.
  3. Get the plain Java Client Libraries. In the Plain .zip Files section download the Plain Java Client Libraries and the API documentation.
All Downloads page

The JDK

The download for the EWM Client for Eclipse contains the required JDK in the folder jazz/jdk. Unpack the EWM client and use the JDK for your development with the Eclipse Client Libraries and Maven.

The trouble with Maven and the Plain Java Client Libraries.

Unfortunately there is no Maven library for the Plain Java Client Libraries. This is a problem, because there is no real good solution (that I could find) to work with Maven and libraries that do not have a maven repository.

In some projects, I was able to get away with working with Maven and the Plain Java Client Libraries, using an Eclipse User Library with the Plain Java Client Libraries. This works, if at all, only in the Eclipse IDE.

In a recent project this solution was not manageable. I was unable to compile, or I was able to compile, but running the application failed with class not found exceptions. I got it working on my laptop, but we were unable to get it working for a colleague. We lost days.

My usual strategy of using <put your most popular internet search engine here> to find solutions did not really help. Solutions that I found where cryptic, not understandable and/or did not work.

Packaging the Plain Java Client Libraries as local Maven repository.

I finally found this script https://github.com/cokeSchlumpf/mvn-rtc-java-api that allows packaging the plain java client libraries as a maven repository and include that in the application POM file. This allows shipping the Plain Java Client Libraries as Maven repository with the application and its code to be able to run Maven in Eclipse as well as on the command line.

Although the script finally was a life saver, I had some tough learning to get things right. The main issue was that it is a Bash script and my Windows system does not Bash. I tried installing Cygwin64 but realized that I would have to install all kind of stuff to get that working. As I had recently done some other EWM and containerization related work on my NAS, I ended up setting up the required Maven and JDK on my NAS system. I was able to run the script from there 7Zip the result and upload it to my development environment.

In my first attempt, unfortunately, I did not pay enough attention to the format of the dependencies. The dependencies to external libraries has the format <groupId>:<artifactId>:<version>.

# 6.0.2
export DEPENDENCIES="org.apache.james:apache-mime4j:0.6 commons-io:commons-io:1.2 org.apache.httpcomponents:httpclient:4.5 org.apache.httpcomponents:httpclient-cache:4.5 org.apache.httpcomponents:httpclient-win:4.5 org.apache.httpcomponents:httpcore:4.4.1 org.apache.httpcomponents:httpcore-ab:4.4.1 org.apache.httpcomponents:httpcore-nio:4.4.1 org.apache.httpcomponents:httpmime:4.5"

For whatever reason I did not realize that and only provided the <groupId>. This creates an invalid repository. The symptom is the warning message ‘The POM for …. is invalid, transitive dependencies (if any) will not be available’. It took a while to figure out what the reason was. I ended up recreating the repository using the following dependencies values for 7.0.1:

# 7.0.1
export DEPENDENCIES="org.apache.james:apache-mime4j:0.6 commons-io:commons-io:1.2 org.apache.httpcomponents:httpclient:4.5.6 org.apache.httpcomponents:httpclient-cache:4.5.6 org.apache.httpcomponents:httpclient-win:4.5.6 org.apache.httpcomponents:httpcore:4.4.10 org.apache.httpcomponents:httpcore-ab:4.4.10 org.apache.httpcomponents:httpcore-nio:4.4.10 org.apache.httpcomponents:httpmime:4.5.6"

It is totally possible that some of my attempts to fix the above problem made things more miserable. I just realized the severity of the issue when I merged my projects to one and still had the problem.

Please note, if you follow the script above, provide the repository and change the pom of your application and run

mvn clean install

the repository is copied into the local maven repository on your machine. It is stored in the user directory in the folder

.m2/repository/com/ibm/rtc/rtc-java-api

If you build a new version of the repository, make sure to delete the folder above, to make sure your new version is actually installed. Maven does not recognize a difference and will not replace the local files on its own. The reason is that there is no version change visible in the data. This holds true also for the machines of your fellow developers. So when recreating a new Plain Java Client Libraries maven repository with the script, make sure to delete the old local maven repository for the library rtc-java-api in you local .m2 folder as explained above. Then run

mvn clean install

This will recreate the maven library.

I finally succeeded with running

# 7.0.1
export DEPENDENCIES="org.apache.james:apache-mime4j:0.6 commons-io:commons-io:1.2 org.apache.httpcomponents:httpclient:4.5.6 org.apache.httpcomponents:httpclient-cache:4.5.6 org.apache.httpcomponents:httpclient-win:4.5.6 org.apache.httpcomponents:httpcore:4.4.10 org.apache.httpcomponents:httpcore-ab:4.4.10 org.apache.httpcomponents:httpcore-nio:4.4.10 org.apache.httpcomponents:httpmime:4.5.6"

./setup-repo.sh -l ./libs-7.0.1 -r ./repo -d "${DEPENDENCIES}" -v 7.0.1

I followed the readme and added the following to my pom.xml

	<!-- The maven dependency for the EWM Plain Java Client Libraries provided in a local repository -->
		<dependency>
			<groupId>com.ibm.rtc</groupId>
			<artifactId>rtc-java-api</artifactId>
			<version>7.0.1</version>
			<type>pom</type>
		</dependency>

and the repository:

<!-- The maven repository for the EWM Plain Java Client Libraries -->
<repositories>
    <repository>
        <id>project-repo</id>
        <releases>
            <enabled>true</enabled>
            <checksumPolicy>ignore</checksumPolicy>
        </releases>
        <snapshots>
            <enabled>true</enabled>
        </snapshots>
        <url>file://${project.basedir}/repo</url>
    </repository>
</repositories>

The location is based on a project property:

		<project.basedir>${basedir}</project.basedir>

So the files of the repository where copied and located in my Eclipse project in the folder repo in the project root folder.

The repository is bundled in the folder repo

Now it is possible to run Maven from within Eclipse as well as on the shell/command line and my project cleans, installs and liberty:run and the warning mentioned above is gone.

I can only suggest to use the mvn-rtc-java-api – Simple setup RTC Java Client API for Maven project. I would like to thank Victor and Michael for their great contribution. I can only suggest to use it for your purposes.

Whats Next?

I am a bit hesitant to use my personal NAS system as an extended Linux system for development. I will see if I can find some time to understand what the application does in detail and maybe rewrite it in Python. That would make it more operating system independent and allow broader usage.

Summary

As always, I hope that this post helps users out there to achieve their goal and saves some hours of work.

Issues with the EWM/RTC Extensions workshop in 7.0.x versions

I have seen issues with the RTC Client SDK for the 7.0.x releases recently. The Server SDK seems not to be affected.

Client plug-in development

UPDATE: The issue with the Client SDK has been found and corrected. Just download and use the new Client SDK.

UPDATE: The issue with the server debugging can be solved as explained below.

If you are using the  Rational Team Concert Extensions Workshop for the EWM/RTC versions 7.0.0, 7.0.1, 7.0.2 and try to start an Eclipse client from the client launch as described in section 1.9 Test the RTC Eclipse client launch, you might run into a problem. I reported the issue in Defect 511733 (use your Jazz.net credentials).

This issue has been solved and you should not see it any longer. Make sure to download the latest Client SDK from Jazz.net.

If you need to develop client extensions and run into this problem, check the status of the defect. Worst case, use a 6.0.6.1 SDK to develop your extension. This is absolutely possible if you do not rely on a new client API feature from 7.0.x.

Server debugging

If you are using the  Rational Team Concert Extensions Workshop for the EWM/RTC versions 7.0.2, trying to launch the development server in debug mode that allows to attach an Eclipse debugger to that server, the server startup fails. In ‘1.2__15 start the server using server.startup.bat’ after adding the debug configuration, the server does not start. The log folder only contains the files start.log and console.log. The content indicates that the connection to the debug port failed because the port was already in use. When checking the pot usage, the port is not in use. This has not been seen in any version before. See Defect 527867 for work arounds and solutions.

Update: see http://EWM Extensions Workshop remote debugging in 7.0.x for how to deal with this.

Searching and Exploring the RTC SDK

I have answered many customer questions about the RTC Java APIs in the past. Many of the posts in this blog are the result of such questions. I have no privileged access to the RTC source code. As far as I can tell, there is no secret library of RTC API documentation that the IBM development team is hiding from everybody else. Even if there was such documentation, I do not have access to it. So, how do I come up with those answers?

In short, by using the available capabilities to search for answers.

Prerequisites

The content below requires to know Learning To Fly: Getting Started with the RTC Java API’s and the Extensions Workshop.

Know where and how to search

The whole answer is, that it is not necessary to know everything. It is just necessary to know how and where to search for the answers. These days, there are basically two answers to where and how to search.

  1. The Internet using search engines
  2. The RTC SDK using the Eclipse IDE’s capabilities.

I have already explained how and where to search the internet in the post Learning To Fly: Getting Started with the RTC Java API’s in the section Where can I find Examples and Example Code?.

Search the internet

Search the internet and limit the search to sites that are likely to have relevant information. Examples are Jazz.net and stackoverflow.com. Jazz.net has the Forum and the development Wiki. Stackoverflow has a lot of questions and answers from many contributions.

I did contribute at stackoverflow as well, but gave up when they would not accept a link to external content as answer. The purpose of this blog is to be able to provide answers and share examples. For that very reason rsjazz.wordpress.com is also a good place to search. The search capability in the top right of this blog is also a valid place to search. The page Interesting Links is a collection of links to other sources I have come across over the years.

Very recently the Jazz community and Github have become a source as well.

Many questions in the context of RTC Extensions might be just related to Eclipse Plugin development. https://www.eclipse.org/ has a lot of examples and documentation around such questions.

Search the RTC SDK

If there are no ready examples and answers in the internet, there is a host of example code available in the RTC SDK. The RTC SDK contains at least the following:

  1. Unit test code for RTC the Java API. These contain especially examples for the administration API, but also for other parts of the client API provided by the Plain Java Client Libraries.
  2. The Java Code for the client API provided by the Plan Java Client Libraries, including the documentation that is used to create the JavaDoc for the Plain Java Client Libraries.
  3. RTC Rich Client Platform code used in the RTC Eclipse Client, including comments. This code uses the public client API but also uses internal API.
  4. RTC Client plug in code, including Client operation behavior such as advisors (pre-conditions), participants (follow up actions), aspect editors providing the Eclipse Admin UI and related information.
  5. RTC Server API and RTC Server code, including documentation for interfaces and methods.
  6. RTC Server plug in code, including server operation behavior such as advisors (pre-conditions), participants (follow up actions), aspect editors providing the Eclipse Admin UI and related information.
  7. Client and server extension points and related code.
  8. Code for asynchronous tasks.

All the code mentioned above is included in the RTC Server SDK that is shipped with RTC in the all download section. The RTC Client SDK that is shipped in addition since 6.0.3 only contains the client code which is kept compatible to earlier versions of the Eclipse client.

You can search the RTC SDK by using the capabilities provided by Eclipse. Especially the Eclipse Plugin Development (PDE) and Rich Client Platform (RCP) development tools provide a comprehensive set of features to search the RTC SDK. There are several approaches that can be used to search in Eclipse and the Eclipse PDE:

  1. Java Search for types, interfaces, methods and other Java Related properties. This includes the capability to use search pattern e.g. use an asterisk. It is possible to specify the relationships to search for e.g. search for classes that implement an interface.
  2. Search for Plugins, Extension points, references to extension points. This includes the capability to see the plugin.xml for other extensions, revealing all the implementation classes and relevant information that can be used again in 1 to narrow down the search to the relevant code.
  3. Eclipse RCP/SWT Inspectors such as Yari or tools like the built in Plugin Spy allow to use the declarative and reflective capabilities of Eclipse and the RCP to analyze the UI and other information provided in the plugins and features. This allows to find which classes are called in menus and to look at which data is used by views and how it is used.
  4. Other search capabilities such as File search and Text search can help in certain conditions.

These capabilities allow to pretty much find anything that is available in the RTC SDK. This does not make it trivial to understand what is found, especially the RCP UI code of RTC is sometimes very hard to understand, but it provides at least entry points, where to start.

Once something is found, there are various means available to

  1. Open or navigate to the element that is found
  2. Open the package containing the element, if applicable
  3. Open other items that are related to the found element

This is really all one needs to know. The rest is just using these capabilities to your advantage. Some examples how to use this are given below.

Finding Built-in Extensions in the SDK

The SDK contains all the client and server extensions and their source code. When developing a custom advisor or follow up action e.g. following the Extensions Workshop it is a good idea to get inspiration from the existing code. How does that code work? How does it use the API?

Any such scenario starts with finding examples that use one of the relevant extension points. The extension points are shown in the Extensions Workshop and other examples. Most likely there is an example using an extension point in the plugin.xml already, or a new plugin.xml has been just created.

In the open open editor of the plugin.xml on the Extensions tab, right click the extension point that is of interest. To understand where this is used select Find References and click to start the search.

Search for references to an existing extension point.
Search for references to an existing extension point.

The search window will open below and show the references found after a while. This can take some time, dependent on the performance of the client computer. The search result will show multiple hits. The image below shows a part of the hits in the current workspace. It especially shows the references from RTC SDK code to the extension point used by server operation advisors. All the references shown here have the same namespace prefix com.ibm.team. This hints that the origin of the code is in the RTC SDK.

Operation Advisors shipped with RTC.
Operation Advisors shipped with RTC.

Use the up and down arrows to browse the referencing plugin XML’s, or click one of the rows in the search that is of interest. Make yourself familiar with the name spaces that are used. This makes it easier to focus on the important examples you are looking for.

The namespaces refer to the following components of RTC

  • com.ibm.team.apt – Agile Planning
  • com.ibm.team.build – Build
  • com.ibm.team.filesystem – Source Control Filesystem
  • com.ibm.team.scm – Source Control
  • com.ibm.team.workitem – Work Items

When looking for an example for SCM related operations such as deliver, look at the examples in the namespaces filesystem and scm. When looking at work item related extensions look into the examples with the workitem namespace.

Click the search result to open the related plugin.xml. As an example the search result
com.ibm.team.workitem.service. Eclipse allows to find strings in open files, so it is possible to search for strings using CTRL+F. E.g. search for Required to find because you are interested in advisors for required attributes.

Required Attributes by Tape and State Advisor
Required Attributes by Tape and State Advisor

In the plugin.XML you can see the implementing class. You can use the full qualified class name e.g. com.ibm.team.workitem.common.internal.RequiredAttributesByTypeAndStateAdvisor to open the class using the Navigate>Open Type menu of Eclipse.

Open the implementation class of the advisor
Open the implementation class of the advisor

This repository workspace has the SDK set up as well as the RTC Plain Java Client Libraries. Select the class in the SDK. Browse the classes code and documentation. Open the Class in the package explorer.

Explore the package containing the class
Explore the package containing the class

In the package explorer view in Eclipse browse the package e.g. C:\RTC605Dev\installs\rtc-server-sdk\plugins\com.ibm.team.workitem.common_3.2.900.v20170928_1641.jar.

Scroll down to the lower area. There are some packages that do not contain Java classes. For example there is a package or rather folder, that contain files such as the schemas used by the aspect editors in the admin UI. You can open the files to look at the details.

Package explorer shows related content.
Package explorer shows related content.

Please note: the one I was really looking for is a bit elusive, and I have not been able to locate it until now. I will update the post as soon as I have a solution.

This is only one way of doing it. Dependent on what is available and what one knows there are many other ways to look into the source code. For example search for all extension points with a package name of com.ibm.team* to find all the extension points. Search for specific Plugins, in case the name is available.

Search for References to an extension point.

Try to explore different angles to find what you are looking for.

Search the Java Code

As already mentioned, it is possible to search for Java classes. This can also use search patter using an askerisk. Search for different aspects such as methods and interfaces and limit the search result set.

Once a class is open, it is easy to navigate within the class hierarchy, open the jar file in the package explorer etc..

Explore the UI to add Menus

Here a key point is knowing and using Eclipse RCP/SWT Inspectors such as Yari. How it is done is This has been explained in Adding Context Menus for Jazz Objects to the RTC Eclipse Client and Hiding UI Contributions in the RTC Eclipse Client.

Summary

As seen above, there are many ways to find stuff in the RTC SDK that can be used. As always I hope this helps users out there with their endeavors. I will try to add more examples.

The RTC SDK is about to change in 6.0.3

Since some time now, the RTC and Jazz Development teams are in discussion how to cope with the version compatibility requirements driven by Eclipse clients and the server API. In RTC 6.0.3 the SDK is about to be split into separate SDK’s for the Eclipse client and the Server. This will impact how the development environment needs to be set up and how extensions are developed. I will try to share a summary of what to expect here. I have so far only been able to experiment with development builds, there has not been an official release of the SDK for 6.0.3 yet.

Download the new workshop

Update * the new Extensions Workshop is finished for a while now. it can be found at the original Rational Team Concert Extensions Workshop location.

Why splitting the SDK?

The RTC Clients have been based on Eclipse 3.6 for a considerable amount of time now. This has been the case for the Jazz Servers as well. However, there is pressure on the server infrastructure for the need to support Eclipse 4.4.x and higher. On the other hand there are client applications that RTC needs to integrate with, that are lagging behind in adoption of new Eclipse versions.

As described in What API’s are Available for RTC and What Can You Extend? the RTC SDK currently contains the RTC Server API, the RTC Common API and the RTC Client API in one delivery. The RTC Common API is part of the RTC Server API as well as the RTC Client API. This is a potential problem when shipping the SDK and trying to keep the Server compatible to Eclipse 4.4.2 and above and being compatible with Eclipse 3.6 clients. As it looks, the RTC SDK will be split into two parts.

  1. A RTC Server SDK bundling the RTC Server API and the RTC Common API compatible with Eclipse 4.4.x and higher
  2. A RTC Client SDK bundling the RTC Client API and the RTC Common API compatible with Eclipse 3.6.x and higher

Impact of splitting the SDK

The split has various impacts on how extension development will now work. Please find below a short summary of changes that I have found necessary to perform the workshop.

Changes to section: 1.1 Download and Unzip the Required Files from jazz.net

The Server SDK Target Platform now requires an Eclipse 4.4.2 or higher. You can download the base Eclipse 4.4.2 client here. For example download the version Eclipse IDE for Java EE Developers. Install the client similar to described in the workshop. Then download the RTC Eclipse Client p2 install package and install this into your Eclipse 4.4.2.

In the Feature Based Launches download the new launcher442.zip. Unzip the zip file, browse to the enclosed JAR file and copy that into the dropins folder in the Eclipse client.

You might want to consider to do the following changes to the eclipse.ini file.

  • Add a section -vm with an additional line for the java virtual machine to use. If you run Eclipse with a different JVM, e.g. from Oracle, consider to specify a JRE or JDK that is compatible with the one that ships with RTC. This vm would also be used in the workspace setup section.
  • Add -showLocation in the org.eclipse.platform section; this shows the Eclipse workspace path in the upper border of the Eclipse client as below

    eclipse-workspace_2016-11-07_11-23-52

    This makes it possible to actually work with multiple workspaces and knowing which an Eclipse instance is responsible for.

  • A vmargs argument -Duser.language=en to make sure you get a consistent language in the menus if you want.

The image below shows the changes in my caseeclipse-ini-2016-11-07_11-09-02

Changes to section: 1.2 Setup for Development

Once the SDK is split into two parts the Rational Team Concert Extensions Workshop can no longer be performed using just one Eclipse Workspace. An SDK is set up as a Target Platform in the Plug-in Development section. Since the SDK’s are now split, it is necessary to have two target platforms. Since it is not possible to have more than one Target platform active in one Eclipse workspace it is not possible to launch a server for debugging while running an Eclipse client from the same workspace.

The RTC Extensions workshop will have to be changed to set up two separate workspaces.

  • One workspace will have to be set up with the RTC Server SDK as active Target Platform, for example using the path: C:\RTC603Dev\Workspaces\Dev1\Server
  • The other  workspace will have to be set up with the RTC Client SDK as active Target Platform, for example using the path: C:\RTC603Dev\Workspaces\Dev1\Client

Both workspaces will require to be set up as described in the RTC Extensions workshop document in section 1.2 Setup for Development.However, you will set up different target platforms in this step. Using the Server SDK for the server development workshop and the Client SDK for the Client development workspace.

Please note, it is a good idea to configure Eclipse to use an external browser as well in this step.

Changes to section: 1.3 Setup the RTC Tomcat Server

I am modifying the WorkshopSetup tool and data to setup the RTC project named RTC Extension Workshop to support an easier setup for the two workspaces. Basically two separate RTC Repository workspaces will be available. One will provide the launch, the configurations and the components needed to develop the RTC Eclipse server extension part of the workshop. The other one will provide the launch and the components needed to develop the RTC Eclipse client extension part of the workshop.

As long as this is not yet available it is possible to start with the existing setup tool and the related repository workspace and to load that into the two Eclipse workspaces. One workspace has to be set up with the RTC Client SDK will be used for development of the client part. The other with the RTC Server SDK set up is used to develop the server parts. When performing the workshop it will be necessary to work with the two workspaces and use one for all the server related tasks and the other one with the client related tasks. When Accepting changes into these workspaces it is necessary to understand what is part of the client and what is part of the server or what is shared. The image below shows what belongs to what.

  • The parts colored in blue are only related to server development
  • The parts colored in yellow are only related to client development
  • The uncolored parts are related to client and server development

client-server-common

Make sure to keep in mind which parts of the code are relevant for what. As an example, the project net.jazz.rtcext.workitem.extensions.ide.ui will not compile in the server development workspace. Similarly the net.jazz.rtcext.workitem.extensions.service project will not compile in the client development workspace.

Changes to section: 1.4 Complete Setup of Your RTC Eclipse Client

After Loading the repository workspace you have the choice to split the information into a sever part and a client part. For example you can duplicate RTC Extension Workshop Configuration and create one that only contains the client launches. Or you keep everything as it is and basically close the project areas you don’t need and ignore launches not needed. This is the easiest approach until a new Extension Workshop is available.

The initial step of copying the files services.xml and scr.xml is only needed in the server workspace. So when copying and importing, copy the files services.xml and scr.xml from your server’s ccm application in the installs\JazzTeamServer\server\conf\ccm folder into the RTC Extension Workshop Configuration project into the folder conf/jazz in the server development workspace.

When importing the plugins and features import the following into the server workspace:

  • com.ibm.team.common.tests.utils
  • com.ibm.team.jazz.foundation.server.licenses.enterprise-ea (or com.ibm.team.licensing.product.clm)
  • com.ibm.team.licensing.product.rtc-standalone

When importing the plugins and features import the following into the client workspace:

  • com.ibm.team.rtc.client.feature

Other considerations

As already mentioned, make sure to keep track which workspace you are working in and keep in mind that the server development part will not work in the client development workspace and vice versa.

Just Starting With Extending RTC?

If you just get started with extending Rational Team Concert, or create API based automation, start with the post Learning To Fly: Getting Started with the RTC Java API’s and follow the linked resources.

You should be able to use the following code in this environment and get your own automation or extension working.

Summary

We have major changes coming up in the RTC Extension development area. The RTC Extension workshop needs to be adjusted and parts of the workshop lab needs to be reorganized and rewritten. This post explains what to consider for experienced users. Once there is an update to the Extension workshop lab material this post will be updated.

As always, I hope this helps users out there and saves them some time.

Build On State Change Work Item Save Participant

In the unlikely event you have missed it or just to complete the hit list if you search for examples on this blog, the Build On State Change Work Item Save participant/follow up action is a complete example as part of the Rational Team Concert Extensions Workshop.

The Build On State Change Work Item Save participant monitors work item state changes of configured work item types and state changes. If a qualifying change happens, it issues a build request for a configured build definition. The example comes with a complete package including the configuration UI.

Just Starting with API work?

If you just get started with extending Rational Team Concert, or create API based automation, start with the post Learning To Fly: Getting Started with the RTC Java API’s and follow the linked resources.

Running the RTC Extensions Workshop With RTC 6.0.1

RTC version 6.0.1 is available since end of December 2015. I ran a test to find out if the Rational Team Concert Extensions Workshop still works with RTC 6.0.1. This is what I found.

The version 6.0.1 does not ship Tomcat any more. The Rational Team Concert Extensions Workshop explains how to debug deployed extensions on a Tomcat test server. How does this change the workshop?

Important note: Debugging on Tomcat is only presented as an option, it can be useful if an extension has been fully developed on Jetty, but shows a different behavior on a real environment. Using this technique to develop an extension step by step is not a suggested procedure, instead using Jetty is the preferred way. From this perspective, Section 1.5 in the lab is unimportant for the rest of the workshop and this step could actually be skipped.

Summary

By installing the default values and basically choosing WAS Liberty Profile the workshop works. Basically Tomcat is replaced with WAS Liberty Profile and everything should work as expected. Due to the changes over time, some small adjustments are needed or useful. these adjustments can be found below.

Update

Please see the update for changing the development application server configuration to enable debugging.

Update the issue is fixed: Please note that currently The SDK for RTC6.0.2 has a defect that makes it impossible to be used. See 390811: RTC SDK breaks Extension workshop with missing feature com.ibm.team.rtc.update.site.content.rtc.feature. Use an earlier version of the SDK to develop for now.

Install and Setup Changes

Here some changes that make the workshop more effective. They are described in the workshop in several notes, here a more explicit description.

Section 1.1 Download and Unzip the Required Files from jazz.net

The easiest way to do the Rational Team Concert Extensions Workshop I have found is not to use the Web installer, but to use the ZIP version of RTC.This requires sone minor changes to the sections 1.1. and 1.2 as described below.

You can use the Web Installer, as well as the IBM Installation Manager. If using the Web Installer the changes for 6.0.1 begin in Section 1.3 Setup the RTC Tomcat Server. If using the Installation manager, make sure to install into the folder as described in the workshop.

 1.1__1. Download the product installation files.

In step _b: As alternative, download the ZIP version of RTC named “Jazz Team Server and the CCM Application, and Trial licenses for Rational Team Concert”.

RTC_ZIP Version

Follow the rest of the steps of 1.1_1 and 1.1_2 as described.

If you want to follow the steps from the Rational Team Concert Extensions Workshop and use the web installer, or a the IBM Installation Manager install, make sure to install

 1.1__3. Install the RTC Eclipse client and a test server.

In step _b: To install the zip version of RTC, extract the zip file JTS-CCM-keys-Win64_6.0.1.zip you downloaded for “Jazz Team Server and the CCM Application, and Trial licenses for Rational Team Concert” to the folder:

C:\RTC601Dev\installs\JazzTeamServer

Continue with step _h Unzip the Client for Eclipse IDE zip file

Section 1.3 Setup the RTC Tomcat Server

Instead of Tomcat RTC and CLM 6.0.x bundle WAS Liberty Profile.

 1.1__3. Setup to run the server in debug mode

On windows I have followed the original descriptions in the Extesnsions workshop and added the Java options to the server.startup.bat and it worked for me.

However Lewis Tsao reported in the comments below that on Linux there are changes. He reports the server just dies if he uses suggested lines. He found the article https://jazz.net/wiki/bin/view/Deployment/EnableLibertyRTCServerDebugMode. Based on this, even on Windows it might be worth exploring this and follow the link above. For mode details look at his comments below.

Note that

  • For 6.0.1 the server should be started as “./server.startup -debug” or modify “DEBUG=false” in server.startup to “DEBUG=true”
  • For 6.0.2 the server should be startd as “./server.startup debug”

1.1.__14_b. Open And Review the WorkshopSetup.bat file

The windows version of this file has sometimes problems with some Java versions, because the parameter order is kind of skewed. During development of the tool, this never came up. It will be fixed in a newer version.

Move the parameter -jar in front of the parameter WorkshopSetup.jar

Instead of

Fix workshopSetup.bat_1

the batch file should look like this:

Fix workshopSetup.bat_2

Follow the other suggestions to consider and change the file if needed and perform the rest of the steps as described.

When running the WorkshopSetup command I have very seldom seen errors, one I have seen today was maybe because of the server performance. If this happens, try running the WorkshopSetup again.

Section 1.4 Complete Setup of Your RTC Eclipse Client

For an unknown reason, the project was not initialized. Right click the project in the Team Artifacts view and click initialize to finish the project setup, if this happens.

Section 1.5 Test connecting the Eclipse debugger to Tomcat

If the changes to the server.startup.bat in section 1.3 where successfully performed, this section works the same way with the server deployed on WAS Liberty Profile.

Section 1.6 Test the Jetty Based Server Launch

The software needs more memory. In step

1.6__25__b.

change the memory available for the [RTCExt] Create RTC Test Database launch. The original setting is -Xmx256. With this setting I got a memory error in the JUnit test that creates the development time repository database.

Change the memory setting to -Xmx512 as shown below.

Memory Setting For JUnit launch

Section 1.7 Test the RTC Eclipse Client Launch

In step 1.7.__31.__b.__ii.

The Launch shows a missing bundle.

Eclipse Client launch Missing Bundle

This missing bundle does however not prevent you from running the launch and as far as I can tell at this point in time, the workshop is still working. You can remove the missing bundle as well.

The rest of the workshop should work as desired.

Related Posts

Summary

The  Rational Team Concert Extensions Workshop still works for version RTC 6.0.1. I will however try to find some time to do an overhaul for RTC 6.0.2.

Setting Custom Attributes for SCM Versionables

This is the forth post in the series around very fine grained access control permissions for work items and SCM versionables. It explains the last requirement, which was to be able to set the custom attributes on elements in the SCM system using the RTC API.

See the problem description in the first post of the series

Related posts

The posts in this series are:

  1. Manage Access Control Permissions for Work Items and Versionables
  2. Setting Access Control Permissions for Work Items
  3. Setting Access Control Permissions for SCM Versionables
  4. Setting Custom Attributes for SCM Versionables – this post

License

The post contains published code, so our lawyers reminded me to state that the code in this post is derived from examples from Jazz.net as well as the RTC SDK. The usage of code from that example source code is governed by this license. Therefore this code is governed by this license. I found a section relevant to source code at the and of the license. Please also remember, as stated in the disclaimer, that this code comes with the usual lack of promise or guarantee. Enjoy!

Just Starting With Extending RTC?

If you just get started with extending Rational Team Concert, or create API based automation, start with the post Learning To Fly: Getting Started with the RTC Java API’s and follow the linked resources.

You should be able to use the following code in this environment and get your own automation or extension working.

Compatibility

This code has been used with RTC 5.0.2 and is prepared to be used with RTC 6.0.x with no changes and it is pretty safe to assume, that the code will work with newer versions of RTC.

The code in this post uses common libraries/services that are available in the Plain Java Client, Eclipse client and Jazz Eclipse server API. If client or server API is used, this is stated.

Note, some capabilities where only finalized in RTC 6.0.1 and are not available in versions before. Especially custom attributes for components and potentially for items other than SCM versionables.

Custom Attributes for SCM Versionables

Rational Team Concert 5.0.2 introduces support for creating custom attributes on source file versions.

The attributes can be set for every version of the SCM versionable. Dependent on the definition the attribute can be missing or different on different versions. This is different to the behavior we have seen in the post Setting Access Control Permissions for SCM Versionables, where the read access permission applies to all versions of the item.

The image below shows for which SCM elements custom attributes are available and how they can be set up to behave.

SCM Attributes

The behavior is important, because there are several very distinct requirements. For example it is desirable to be able to set some attribute only on one specific version. As an example to classify safety critical source code that needs special testing if changed, to allow for auditing. For others it is better to keep a value, once it is set.

Working with Custom Attributes for SCM Versionables

The following code shows how to work with the custom attributes for versionable handles. Please note, that there is no way to access these attributes in the RTC UI at the moment. They are accessible in the API otherwise they can only be set and read in the RTC SCM Commandline.

Getting the IScmService

To set custom attributes for versionables, requires the IScmService class com.ibm.team.scm.common.IScmService. As described in the post Setting Access Control Permissions for SCM Versionables, It is easy to get this service in the Server API, by basically using

IScmService fScmService = getService(IScmService.class);

However, in the Client API, this is not accessible as client library using the usual getClientLibrary() call.

I searched the client API and found about 6 different ways how this interface was requested by the product and test code in the RTC client SDK. For various reasons I picked the following approach and wrapped it into a utility class.

/*******************************************************************************
 * Licensed Materials - Property of IBM
 * (c) Copyright IBM Corporation 2015. All Rights Reserved. 
 *
 * Note to U.S. Government Users Restricted Rights:  Use, duplication or 
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 *******************************************************************************/
package com.ibm.js.access.control.client;

import com.ibm.team.repository.client.ITeamRepository;
import com.ibm.team.repository.client.internal.TeamRepository;
import com.ibm.team.scm.common.IScmService;

public class ScmServiceClient {
	/**
	 * Get the SCM Service in a client application
	 * 
	 * @param teamRepository
	 * @return
	 */
	public static IScmService getSCMService(ITeamRepository teamRepository) {

		IScmService scmService = (IScmService) ((TeamRepository) teamRepository)
				.getServiceInterface(IScmService.class);
		return scmService;
	}
}

Note that the method uses the internal interface com.ibm.team.repository.client.internal.TeamRepository and not the interface ITeamRepository that is usually used to get a client library. The method getServiceInterface() is not exposed on ITeamRepository, so it is necessary to cast the ITeamRepository object to the actual class that implements the interface.

Listing Custom Attributes

See this post for a hint.

Setting Custom Attributes

The following code sets the custom attributes for versionable handles.

It basically gets the attributes available on the element. The data is returned as a hashmap with the attribute name being the key. This can be used for printing the data as well as shown below.

The code puts the attribute and its value in the hashmap and then this nap is passed to be saved.

/**
 * Set a specific attribute of versionable handles
 * 
 * @param vhandles
 * @param attributeName
 * @param attributeValue
 * @param scmService
 * @throws TeamRepositoryException
 */
public static void setAttribute(IVersionableHandle[] vhandles,
		String attributeName, String attributeValue, IScmService scmService )
		throws TeamRepositoryException {
	ICustomAttributeList[] versionableAttributesList = scmService
			.fetchCustomAttributesForVersionable(vhandles, null);
	
	for (int i = 0; i < versionableAttributesList.length; i++) {
		ICustomAttributeList attributeList = versionableAttributesList[i];
		Map<String, Object> attributeMap = attributeList
				.getCustomAttributes();
		attributeMap.put(attributeName, attributeValue);
		attributeList.setCustomAttributes(attributeMap);
		scmService.saveCustomAttributesForVersionable(vhandles[i],
				attributeList, null);
	}
}

As shown in the post Setting Access Control Permissions for SCM Versionables it is easy to create the required array if only one versionable handle is available using this code.

IVersionableHandle[] vhandles = new IVersionableHandle[] { versionableHandle };

Similar, it is easy to use the code here if the available data is a change set, by using the same technique as shown in the post Setting Access Control Permissions for SCM Versionables.

In both case, it is possible to create the array with all elements that need the change and then run the operation for all. This is also the most efficient way.

Removing Custom Attributes

Custom attributes can be removed by removing an attribute entry from the map or creating a map that does not contain this attribute. It is possible to erase all custom attributes by setting an empty map like below:

ICustomAttributeList[] versionableAttributesList = scmService
		.fetchCustomAttributesForVersionable(vhandles, null);

for (int i = 0; i < versionableAttributesList.length; i++) {
	ICustomAttributeList attributeList = versionableAttributesList[i];
	attributeList.setCustomAttributes(new HashMap<String, Object>());
	scmService.saveCustomAttributesForVersionable(vhandles[i],
			attributeList, null);
}

I have not tested this, but I assume that attributes that are defined to have a default value and are automatically applied, will be recreated with the default value when deleting them from the map.

Getting Custom Attributes

The next code snippet shows how to get or accesses the custom attributes and how to print them. It basically gets the map and then iterates the contained keys to access the attributes:

/**
 * Print the attributes for an array of versionable handles
 * 
 * @param vhandles
 * @param scmService
 * @throws TeamRepositoryException
 */
public static void printAttributes(IVersionableHandle[] vhandles, IScmService scmService,String message)
		throws TeamRepositoryException {
	System.out.println(message);
	ICustomAttributeList[] versionableAttributesList = scmService
			.fetchCustomAttributesForVersionable(vhandles, null);

	for (int i = 0; i < versionableAttributesList.length; i++) {
		ICustomAttributeList attributeList = versionableAttributesList[i];
		Map<String, Object> attributeMap = attributeList
				.getCustomAttributes();
		printAttributes("Attributes: ",attributeMap);
	}
}


/**
 * @param message
 * @param attributeMap
 */
private static void printAttributes(String message, Map<String, Object> attributeMap) {
	System.out.print(message + " - ");
	Set keys = attributeMap.keySet();
	if(keys.isEmpty()){
		System.out.print("No");
	}
	System.out.println(" attributes found:");
	for (String key : keys) {
		Object value = attributeMap.get(key);
		printAttributeValue(message, key, value);			
	}	
}

/**
 * @param message
 * @param key
 * @param value
 */
private static void printAttributeValue(String message, String key, Object value) {
	if (value != null) {
		System.out.println(message + ": " + key
				+ " value: " + ((String) value));
	} else {
		System.out.println("Version Attribute: " + key
				+ " no value");
	}
}

Getting Available Custom Attributes

Please see How to retrieve the set of allowed custom SCM attributes via Plain Java Client API?

Custom Attributes for Other SCM Elements

The API to get or set custom attributes for other objects, is similar to the API for versionables. Since they are unique objects and don’t have different versions, there is only one set of custom attributes available for them.

Please note, the full functionality for these objects only became available in 6.0.1

Custom Attributes for Streams

To set custom attributes for streams, since 6.0.1 the common API provides the interface

com.ibm.team.scm.service.internal.ScmService.setWorkspaceCustomAttributes(IWorkspaceHandle, IGenericAttributes, String[], ISynchronizationTimes[], IRepositoryProgressMonitorHandle)

to set custom attributes.

The interface com.ibm.team.scm.common.IWorkspace provides the method

com.ibm.team.scm.common.IWorkspace.getCustomAttributes()

to get the custom attributes of the stream.

Please note, that the data is cached, if you want accurate information refresh the object e.g. using com.ibm.team.scm.client.IWorkspaceConnection.refresh(IProgressMonitor).

The code to set and get the custom attributes would look like below:

IWorkspaceManager wm = SCMPlatform.getWorkspaceManager(teamRepository);
IWorkspaceSearchCriteria criteria = IWorkspaceSearchCriteria.FACTORY.newInstance().setKind(IWorkspaceSearchCriteria.STREAMS);
criteria.setExactName("JKE Banking Integration Stream");
List connection = wm.findWorkspaces(criteria, Integer.MAX_VALUE, monitor);
IWorkspaceHandle streamHandle = connection.get(0);
IWorkspaceConnection wcStream = wm.getWorkspaceConnection(streamHandle, monitor);
IWorkspace streamConnection = wcStream.getResolvedWorkspace();
IScmService scmService = ScmServiceClient.getSCMService(teamRepository);
		
Map<String,Object> customAttributes=new HashMap<String,Object>();
customAttributes.put(CUSTOM_ATTRIBUTE, "Test");
String[] attributesToClear = new String[] { CUSTOM_ATTRIBUTE };

wcStream.refresh(monitor);
printAttributes("Stream AttributesInitial", streamConnection.getCustomAttributes());
		
// Set the custom attributes
IGenericAttributes streamAttributes = IGenericAttributes.FACTORY.newInstance(customAttributes);
scmService.setWorkspaceCustomAttributes(streamHandle, streamAttributes, null, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));

wcStream.refresh(monitor);
printAttributes("Stream Attributes", streamConnection.getCustomAttributes());

// Clear the custom attributes
scmService.setWorkspaceCustomAttributes(streamHandle, null, attributesToClear, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));

wcStream.refresh(monitor);
printAttributes("Stream AttributesAfterClear", streamConnection.getCustomAttributes());

Custom Attributes for Snapshots

To set custom attributes for snapshots, since 6.0.1 the common API provides the interface

com.ibm.team.scm.service.internal.ScmService.setBaselineSetCustomAttributes(IBaselineSetHandle, IGenericAttributes, String[], ISynchronizationTimes[], IRepositoryProgressMonitorHandle)

to set custom attributes.

In addition, in 6.0.1, the interface com.ibm.team.scm.common.IBaselineSet provides the method

com.ibm.team.scm.common.IBaselineSet.getCustomAttributes()

to get the custom attributes of the snapshot.

Please note, that the data is cached, if you want accurate information refresh the object e.g. using the IItemManager and the IItemManager.REFRESH flag to get the latest information.

The code to set and get the custom attributes would look like below:

IBaselineSetSearchCriteria bScriteria = IBaselineSetSearchCriteria.FACTORY.newInstance();
bScriteria.setExactName("TestSnapShot");
List baselineSetHandles = SCMPlatform.getWorkspaceManager(teamRepository).findBaselineSets(bScriteria, 100, monitor);
BaselineSetHandle snapShotHandle = (BaselineSetHandle) baselineSetHandles.get(0);
IBaselineSet snapShot = (IBaselineSet) teamRepository.itemManager().fetchCompleteItem(snapShotHandle,IItemManager.REFRESH,monitor);
	
printAttributes("Snapshots AttributesInitial", snapShot.getCustomAttributes());

scmService.setBaselineSetCustomAttributes(snapShotHandle, custAttributes, null, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));
snapShot = (IBaselineSet) teamRepository.itemManager().fetchCompleteItem(snapShotHandle,IItemManager.REFRESH,monitor);
printAttributes("Snapshots Attributes", snapShot.getCustomAttributes());

scmService.setBaselineSetCustomAttributes(snapShotHandle, null, attributesToClear, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));
snapShot = (IBaselineSet) teamRepository.itemManager().fetchCompleteItem(snapShotHandle,IItemManager.REFRESH,monitor);
printAttributes("Snapshots AttributesAfterClear", snapShot.getCustomAttributes());

Custom Attributes for Baselines

To set custom attributes for streams, since 6.0.1 the common API provides the interface

com.ibm.team.scm.service.internal.ScmService.setBaselineCustomAttributes(IBaselineHandle, IGenericAttributes, String[], ISynchronizationTimes[], IRepositoryProgressMonitorHandle)

to set custom attributes for snapshots.

In addition, in 6.0.1, the interface com.ibm.team.scm.common.IBaseline provides the method

com.ibm.team.scm.common.IBaseline.getCustomAttributes()

to get the custom attributes of the baseline.

Please note, that the data is cached, if you want accurate information refresh the object e.g. using the IItemManager and the IItemManager.REFRESH flag to get the latest information.

The code to set and get the custom attributes would look like below:

IBaselineHandle baseLineHandle = buildComponent.getInitialBaseline();
IBaseline baseLine = (IBaseline) teamRepository.itemManager().fetchCompleteItem(baseLineHandle,IItemManager.REFRESH,monitor);
		
printAttributes("Baseline AttributesInitial", baseLine.getCustomAttributes());

scmService.setBaselineCustomAttributes(baseLineHandle, custAttributes, null, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));
baseLine = (IBaseline) teamRepository.itemManager().fetchCompleteItem(baseLineHandle,IItemManager.REFRESH,monitor);
printAttributes("Baseline Attributes", baseLine.getCustomAttributes());

scmService.setBaselineCustomAttributes(baseLineHandle, null, attributesToClear, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));
baseLine = (IBaseline) teamRepository.itemManager().fetchCompleteItem(baseLineHandle,IItemManager.REFRESH,monitor);
printAttributes("Baseline AttributesAfterClear", baseLine.getCustomAttributes());

Custom Attributes for Components

To set custom attributes for components, since 6.0.1 the common API provides the interface

com.ibm.team.scm.service.internal.ScmService.setComponentCustomAttributes(IComponentHandle, IGenericAttributes, String[], ISynchronizationTimes[], IRepositoryProgressMonitorHandle)

In addition, in 6.0.1, the interface com.ibm.team.scm.common.IComponent provides the method

com.ibm.team.scm.common.IComponent.getCustomAttributes()

to get the custom attributes of the component.

Please note, that the data is cached, if you want accurate information refresh the object e.g. using the IItemManager and the IItemManager.REFRESH flag to get the latest information.

The code to set and get the custom attributes would look like below:

printAttributes("Component AttributesInitial", buildComponent.getCustomAttributes());

scmService.setComponentCustomAttributes(buildComponent, custAttributes, null, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));
buildComponent = (IComponent) teamRepository.itemManager().fetchCompleteItem(buildComponent,IItemManager.REFRESH,monitor);
printAttributes("Component Attributes", buildComponent.getCustomAttributes());

scmService.setComponentCustomAttributes(buildComponent, null, attributesToClear, null, IRepositoryProgressMonitor.ITEM_FACTORY.createItem(monitor));
buildComponent = (IComponent) teamRepository.itemManager().fetchCompleteItem(buildComponent,IItemManager.REFRESH,monitor);
printAttributes("Component AttributesAfterClear", buildComponent.getCustomAttributes());

Summary

This post explains how to set custom attributes for SCM elements. As always, I hope this is useful to someone out there.

Manage Access Control Permissions for Work Items and Versionables

A customer requires very fine grained access control to work items and versionable objects such as files in the SCM system. In addition the customer had the requirement to be able to set attributes on elements in the SCM system.

I knew that it can be set for work items and kind of how to because I had briefly looked at it in the A RTC WorkItem Command Line Version 3.0. But I was not completely sure about the rules and how to access the SCM part and the attributes in SCM.

Since the customer needed this urgently I looked at what the rules are and what can be done.

The content is way too big for just one post, so this is going to be a series. The first post explains the rules around access control permissions and some basic API’s around finding the objects that can be used to provide the access control context.

Related posts

The posts in this series are:

  1. Manage Access Control Permissions for Work Items and Versionables – this post
  2. Setting Access Control Permissions for Work Items
  3. Setting Access Control Permissions for SCM Versionables
  4. Setting Attributes for SCM Versionables

Also see

Controlling access to source control artifacts in Rational Team Concert

License and Download

The post contains published code, so our lawyers reminded me to state that the code in this post is derived from examples from Jazz.net as well as the RTC SDK. The usage of code from that example source code is governed by this license. Therefore this code is governed by this license. I found a section relevant to source code at the and of the license. Please also remember, as stated in the disclaimer, that this code comes with the usual lack of promise or guarantee. Enjoy!

Just Starting With Extending RTC?

If you just get started with extending Rational Team Concert, or create API based automation, start with the post Learning To Fly: Getting Started with the RTC Java API’s and follow the linked resources.

You should be able to use the following code in this environment and get your own automation or extension working.

Compatibility

This code has been used with RTC 5.0.2 and is prepared to be used with RTC 6.0.x with no changes and it is pretty safe to assume, that the code will work with newer versions of RTC.

The code in this post uses common libraries/services that are available in the Plain Java Client, Eclipse client and Jazz Eclipse server API. If client or server API is used, this is stated.

Problem Description

The first question was, if it was possible to set the permission to access

  1. Work Items
  2. Items in the SCM system such as versionables

The second question was, if it was possible to set the attributes introduced in RTC 5.0 that can be specified and set using the API. The documentation only mentioned the SCM command line.

The third question was, how team areas and access groups can be created automatically.

The forth question was, what exactly the rules are:

  1. Can this be done in the server?
  2. Can this be done in the client?
  3. Can this be done in a command line tool or from another application?
  4. What permissions are required and what are the rules in the different contexts?

Solution Approach

The approach that we chose was to try to implement a minimal demonstrator to demonstrate the capabilities and prove them as a proof of concept. this demonstrator was also intended to serve as a platform to find the rules.

Learning

Here is what we learned creating the demonstrator.

The Rules – Work Items

Work Items have an attribute called “Restricted Access” that can be used to control access to them. There are basically the following modes available for work items that can be used.

  1. Access control using access control of the project area
  2. Restricted access by category
  3. Restricted access by setting the restricted access attribute

Option 1: Only the users that have access to the context set for the project area can access these items. This can be set to everyone basically exposing the work items to everyone. Other options a re project area membership and access control list etc. The rules here are very clear.

Option 2: It is possible to set RTC in a project area to automatically determine access permissions based on the category (filed against) of the work item. This sets the restricted access to the project area or team area associated to the category. Only members of the team area (and members of sub team areas of the team area associated to the category) have access to the work items which are restricted by category. It is worth noting, that a user being associated to the project area can not look into the work items filed against teams, if these limit access, it is quite the opposite.

Option 3: Use a special editor presentation to set the restricted access attribute manually to a project area or an access group. this could potentially be supported by automation.

The most important learning for option 3 is, that it is only possible to set the restricted access attribute to a project area or an access group this way. It is not possible to set the access context to a team area. If the context is set to a team area, it automatically picks up the containing project area. This also holds for automation.

See this help topic on how to set up the work items to allow setting the restricted access.

The Rules – Versionables

Prior to RTC 6.0.1, which has just been released, it is only possible to set read access control to the default (which is controlled by the component) project areas, team areas (called process areas if the distinction is unimportant) and a single user.

If access control is set to a team area, any member of that team area and its sub team areas have access. Note that this is different from option 2 for work items. If access control is set to a project area, any member who has access to the project area has access to the item.

RTC 6.0.1 introduces the capability to set access control to an access group. Only members of this access group have access to the item. This seems to be the best option by far, especially since access groups can contain project areas and team areas which adds their members to the access group.

Please note, that access control applies to the whole item and its history.

JazzAdmin Repository Role

Users with the JazzAdmin repository role have access to any work item or SCM controlled item, regardless of the access control setting. Users with this role (and sufficient licenses) can access all data.

Project Area Administrators

Administrators of a team or project area and don’t have the JazzAdmin repository role can not access items that have access control set to a context they don’t have access to.

General Rules

Users can only set the access context of work items or items in the SCM system to an access context that preserves their access permission. It is not possible to find or select an access group, process area the user has no access to/is member of or a different user and set the access context to it. This would remove the read permissions and is prevented.

Users with the JazzAdmin role and sufficient licenses however can do this, because they don’t loose read access.

General Rules For Automation

All automation can only perform the operations that are permitted to the user that is used to run the automation. This especially means that automation running in the context of a user with JazzAdmin repository role and the required licenses can perform all operations. The user context available in an automation depends on the automation.

  1. Follow up actions (participants) run in the context of the user that is performing the operation on the client or the server. They are especially not elevated run in a JazzAdmin repository role, if the user that performs the operation does not have this role. It is also not possible to use a different users or services to elevate the permissions.
  2. Preconditions (advisors) must not change the triggering elements. Otherwise the same rules apply as described in follow up actions.
  3. Asynchronous tasks or services in RTC are run with JazzAdmin permissions and can use the IImpersonationService to change the operation to a different user context.
  4. Plain Java Client Library or other client based automation run in the context of the user that was used to log into the system.

In the context of this post, 1 means, that it is not possible to set access control in such an operation that would remove read access from the user that performs the operation. If you require rules where this could be necessary, it would be necessary to run in a administrative context such as an Asynchronous task or in a client application with JazzAdmin repository role.

Finding ProcessAreas, Access Groups and Contributors

How to find the access context information needed using the Java API?

Finding ProcessAreas

There are many ways to find ProcessAreas (project areas and team areas) using the API, the simplest one assumes an java.net.URI constructed from a string based name path of the process area separated by ‘/’.

Lets assume a project area named TestProject1 and a team area within the project are named TestTeam1 and a sub team area underneath TestTeam1 named TestSubTeam1.

The URI for the project area could be constructed from the string “TestProject1”. The URI for TestTeam1 could be constructed from the string “TestProject1/TestTeam1”. Similar the URI for TestSubTeam1 could be constructed from the string “TestProject1/TestTeam1/TestSubTeam1”.

Process area names could contain spaces. Spaces are not allowed in URI’s, therefore they need to be replaced by the encoding character string “%20”.

To construct an java.net.URI from a string value use the following code.

String namePath = "TestProject1/TestTeam1/TestSubTeam1";
URI anURI = URI.create(URI.create(namePath.replaceAll(" ", "%20")))

The service to find the process area by its URI is provided by the interface IAuditableCommon. This interface class, as its name implies, is a common interface that is available in the RTC Plain Java API, as well as the RTC Eclipse client and Eclipse server SDK. This allows to use this API call in any possible context, either by

IAuditableCommon auditableCommon = (IAuditableCommon) teamRepository
	.getClientLibrary(IAuditableCommon.class);

in Plain Java and client SDK based code, or using

IAuditableCommon auditableCommon = getService(IAuditableCommon.class);

in the server extensions that all extend AbstractService (or in case of SCM server extensions AbstractScmService, which extends AbstractService).

For code that already retrieved the common Service IWorkItemCommon, for example to find work items, IAuditableCommon is available using the call

IAuditableCommon auditableCommon = workItemCommon.getAuditableCommon();

So the following code would retrieve the access context for the team area “/TestTeam1/TestSubTeam1” nested in the team area “TestTeam1” in the project area “TestProject1”

String namePath = "TestProject1/TestTeam1/TestSubTeam1";
IProcessArea area = auditableCommon.findProcessAreaByURI(URI.create(namePath.replaceAll(" ", "%20")), null, monitor);
UUID context = area.getItemId();

Note, for work items only a project area is a valid context. Setting the context above will result in the project area containing the process area to be set. Alternatively use

UUID context = area.getProjectArea().getItemId();

for work items and document the fact to save the time to figure it out the hard way during testing (like I did).

Finding the Public Access Context

Work items can also be set to public read access. The constant com.ibm.team.repository.common.IContext.PUBLIC is available for that.

UUID publicContext = IContext.PUBLIC.getUuidValue();

provides with the public access context.

Finding Access Groups

Access Groups are managed in the administration pages of the RTC application. It is possible to create, modify and delete access groups. The image below shows this section.

Access Group ManagementAccess Groups are also accessible using the IAuditableCommon common interface that was already used in the section above.

To get all access groups use this code:

IAccessGroup[] groups;
groups = auditableCommon.getAccessGroups(null, Integer.MAX_VALUE,
	monitor);

This returns all access groups up to a maximal number that is passed to the method.

It is possible to pass a filter to select only access groups with specific name pattern like below.

IAccessGroup[] groups;
groups = auditableCommon.getAccessGroups("My*", Integer.MAX_VALUE,
	monitor);

The access groups can be iterated like below to compare the name or do something similar.

for (IAccessGroup group : groups) {
// Compare the value to the access group name.
	if (group.getName().equalsIgnoreCase(value)) {
		return group;
	}
}

Similar to the process areas above, there is also a public access group which can be obtained like this:

return auditableCommon.getAccessGroupForGroupContextId(
	IContext.PUBLIC, monitor);

Finding Contributors

Finding contributors is different in the client and the server. There is no common API available.

In the client API the IContributorManager can be used for example using the following methods.

IContributorManager contributorManager= teamRepository.contributorManager();
// Find a user by the users ID returns a handle
IContributorHandle contributorHandle = contributorManager
	.fetchContributorByUserId(attributeValue, monitor);

// Get all users, returns a list of full IContributor items
List contributors = contManager.fetchAllContributors(monitor);

In the server API the IContributorService is available and provides the following method.

IContributorService contributorService = getService(IContributorService.class);
contributorService.fetchContributorByUserId(userId);

I was not able to locate a way to search for all users like in the client API. The server API usually gets a user passed and there is no need to find all users.

Summary

This post explains the rules around read access control for work items and RTC SCM versionables and some basic API’s around finding the objects that can be used to provide the access control context. The next post will explain the details around setting access control for work items.